SURVEYING & GEOMATICS TRANSFER, AS
OIT ADVISING GUIDE

Prerequisites and Course Availability per Term

(for complete information, see 2017-2018 UCC Catalog) REvised 01/02/17

<table>
<thead>
<tr>
<th>UCC Course No. and Course Name</th>
<th>Term Offered</th>
<th>Credits</th>
<th>OIT Course No.</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>DRF 112 Computer Aided Drafting (CAD) I</td>
<td>x</td>
<td>3</td>
<td>CE 203</td>
<td>3</td>
</tr>
<tr>
<td>ENGR 111 Engineering Orientation I</td>
<td>x</td>
<td>3</td>
<td>MTH 65</td>
<td>0</td>
</tr>
<tr>
<td>GIS 203 The Digital Earth</td>
<td>x</td>
<td>4</td>
<td>MTH 65</td>
<td>3</td>
</tr>
<tr>
<td>WR 121 English Composition, Intro to Argument</td>
<td>x x x x</td>
<td>18</td>
<td>WR 121</td>
<td>3</td>
</tr>
<tr>
<td>MTH 112 Elementary Functions</td>
<td>x x x x</td>
<td>4</td>
<td>MTH 111 Algebra</td>
<td>4</td>
</tr>
<tr>
<td>WR 122 English Composition, Style & Argument</td>
<td>x x x x</td>
<td>13</td>
<td>WR 122</td>
<td>3</td>
</tr>
<tr>
<td>GIS 234 GIS I</td>
<td>x</td>
<td>4</td>
<td>GIS 234</td>
<td>2</td>
</tr>
<tr>
<td>MTH 251 Calculus I</td>
<td>x x</td>
<td>5</td>
<td>MTH 112</td>
<td>4</td>
</tr>
<tr>
<td>GIS 235 GIS II</td>
<td>x x x</td>
<td>3</td>
<td>GIS 235</td>
<td>2</td>
</tr>
<tr>
<td>MTH 252 Calculus II</td>
<td>x x x</td>
<td>4</td>
<td>MTH 251</td>
<td>4</td>
</tr>
<tr>
<td>SUR 161 Surveying I</td>
<td>x x</td>
<td>16</td>
<td>SUR 161</td>
<td>4</td>
</tr>
<tr>
<td>GIS 234 GIS I</td>
<td>x</td>
<td>4</td>
<td>GIS 234</td>
<td>2</td>
</tr>
<tr>
<td>MTH 251 Calculus I</td>
<td>x x</td>
<td>5</td>
<td>MTH 112</td>
<td>4</td>
</tr>
<tr>
<td>GIS 235 GIS II</td>
<td>x x</td>
<td>3</td>
<td>GIS 235</td>
<td>2</td>
</tr>
<tr>
<td>MTH 252 Calculus II</td>
<td>x x x</td>
<td>4</td>
<td>MTH 251</td>
<td>4</td>
</tr>
<tr>
<td>SUR 161 Surveying I</td>
<td>x x x</td>
<td>15</td>
<td>SUR 161</td>
<td>4</td>
</tr>
<tr>
<td>SUR 162 Surveying II</td>
<td>x</td>
<td>16</td>
<td>SUR 162</td>
<td>4</td>
</tr>
<tr>
<td>PH 211 Physics I w/Calculus</td>
<td>x</td>
<td>5</td>
<td>MTH 251 Co-requisite</td>
<td>4</td>
</tr>
<tr>
<td>MTH 254 Vector Calculus I</td>
<td>x x</td>
<td>4</td>
<td>MTH 252</td>
<td>4</td>
</tr>
<tr>
<td>Social Science Social Science Elective</td>
<td>x x x</td>
<td>3</td>
<td>Social Science Elective</td>
<td>3</td>
</tr>
<tr>
<td>SUR 163 Surveying III</td>
<td>x</td>
<td>15</td>
<td>SUR 163</td>
<td>4</td>
</tr>
<tr>
<td>MTH 243 Intro to Probability & Statistics</td>
<td>x x x</td>
<td>5</td>
<td>MTH 111</td>
<td>4</td>
</tr>
<tr>
<td>PH 212 Physics II w/Calculus</td>
<td>x</td>
<td>5</td>
<td>PH 211</td>
<td>4</td>
</tr>
<tr>
<td>SUR 209 Photogrametry & Remote Sensing</td>
<td>x</td>
<td>4</td>
<td>SUR 209</td>
<td>4</td>
</tr>
<tr>
<td>SUR 242 Land Descriptions & Cadastre</td>
<td>x</td>
<td>18</td>
<td>SUR 242</td>
<td>2</td>
</tr>
<tr>
<td>PH 213 Physics III w/Calculus</td>
<td>x</td>
<td>5</td>
<td>PH 212</td>
<td>4</td>
</tr>
<tr>
<td>WR 227 Technical Report Writing</td>
<td>x x x</td>
<td>4</td>
<td>WR 227</td>
<td>3</td>
</tr>
<tr>
<td>SP 111 Fundamentals of Public Speaking</td>
<td>x x x</td>
<td>16</td>
<td>SP 111</td>
<td>3</td>
</tr>
<tr>
<td>TOTAL DEGREE CREDITS</td>
<td>99</td>
<td></td>
<td>TOTAL ARTICULATED CREDITS</td>
<td>133</td>
</tr>
</tbody>
</table>

Program Advisor:

1. One of the Arts & Letters or Social Science Elective must also meet the UCC Cultural Literacy Requirement

ADDITIONAL CLASSES THAT CAN BE TAKEN AT UCC

<table>
<thead>
<tr>
<th>UCC Course No. and Course Name</th>
<th>Term Offered</th>
<th>Credits</th>
<th>OIT Course No.</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BA 221 Business Law</td>
<td>x x x</td>
<td>4</td>
<td>BUS 226</td>
<td>3</td>
</tr>
<tr>
<td>Arts & Letters Humanities Elective - See Advisor</td>
<td>x x x x</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Social Science Social Science Elective</td>
<td>x x x x</td>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Math Elective Math Elective</td>
<td>x x x x</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Science Science Elective</td>
<td>x x x x</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SP 219 Small Group Discussion</td>
<td>x x</td>
<td>3</td>
<td>SPE 321</td>
<td>3</td>
</tr>
<tr>
<td>ADDITIONAL CREDITS</td>
<td>34</td>
<td></td>
<td>ADDITIONAL CREDITS</td>
<td>38</td>
</tr>
</tbody>
</table>

TOTAL ARTICULATED CREDITS 133

TOTAL DEGREE CREDITS 99

Last updated 1/2/2017
Umpqua Community College
Associate of Science degree in Surveying and Geomatics
to
Oregon Institute of Technology
Bachelor of Science in Geomatics, Surveying Option

Articulation Agreement
2016 - 2017 Catalog

It is agreed that students transferring from Umpqua Community College (UCC) with the Certificate in Geographic Information Systems or with select courses below to Oregon Institute of Technology’s (Oregon Tech) Bachelor of Science in Geomatics, Surveying Option (GMS) program will be given full credit for all selected courses listed below. This agreement is based on the evaluation of the rigor and content of the general education and technical courses at both UCC and Oregon Tech, and is subject to a yearly reevaluation by both schools for continuance. This agreement is dated __________, 2016.

Baccalaureate students must complete a minimum of 60 credits of upper-division work before a degree will be awarded. Upper-division is defined as 300-and 400-level classes at a bachelor's degree granting institution. Baccalaureate students at Oregon Tech must complete 45 credits from Oregon Tech before a degree will be awarded.

Students are responsible for notifying the Oregon Tech Admissions and Registrar’s Office when operating under an articulation agreement to ensure their credits transfer as outlined in this agreement. In order to utilize this agreement students must be attending Umpqua Community College during the above catalog year. Students must enroll at Oregon Tech within three years of this approval.

By ____________________________
Jesse Morrow, Dean of Career and Technical Education
Umpqua Community College

By ____________________________
Marla R. Edge
Director, Academic Agreements
Oregon Institute of Technology

By ____________________________
David Farrington
Registrar
Umpqua Community College

By ____________________________
Wendy Ivie
University Registrar
Oregon Institute of Technology

By ____________________________
Clay Baumgartner
Department Chair, Engineering and Surveying
Umpqua Community College

By ____________________________
Jack A. Walker
Chair, Geomatics
Oregon Institute of Technology
<table>
<thead>
<tr>
<th>Umpqua Community College Course Number & Title</th>
<th>Qtr. Units</th>
<th>Oregon Institute of Technology Course Number & Title</th>
<th>Qtr. Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>DRF 112 Computer Aided Drafting (CAD) I</td>
<td>3</td>
<td>CE 203 Engineering Graphics</td>
<td>3</td>
</tr>
<tr>
<td>GIS 203 The Digital World and Geospatial Concepts</td>
<td>4</td>
<td>GIS 103 The Digital Earth</td>
<td>3</td>
</tr>
<tr>
<td>GIS 234 GIS I: Introduction to GIS</td>
<td>4</td>
<td>GIS 134 Introduction to GIS</td>
<td>3</td>
</tr>
<tr>
<td>GIS 235 GIS II: Analysis and Applications</td>
<td>4</td>
<td>GIS 205 GIS Data Integration</td>
<td>2</td>
</tr>
<tr>
<td>SUR 161 Plane Surveying I</td>
<td>4</td>
<td>GME 161 Plane Surveying I</td>
<td>4</td>
</tr>
<tr>
<td>SUR 162 Plane Surveying II</td>
<td>4</td>
<td>GME 162 Plane Surveying II</td>
<td>4</td>
</tr>
<tr>
<td>SUR 163 Route Surveying</td>
<td>4</td>
<td>GME 163 Route Surveying</td>
<td>4</td>
</tr>
<tr>
<td>SUR 242 Land Description and Cadastre</td>
<td>3</td>
<td>GME 242 Land Description/Cadastre</td>
<td>2</td>
</tr>
<tr>
<td>SUR 209 Photogrammetry & Intro to Remote Sensing</td>
<td>4</td>
<td>ENV/GIS/GME Elective</td>
<td>4</td>
</tr>
<tr>
<td>CIV 214 CAD Civil 3D and</td>
<td>3</td>
<td>GME 264 Digital Design for Surveying</td>
<td>2</td>
</tr>
<tr>
<td>ENGR 111 Orientation to Engineering I</td>
<td>3</td>
<td>Does not count toward Oregon Tech GMS degree¹</td>
<td>--</td>
</tr>
<tr>
<td>MTH 112 Elementary Functions</td>
<td>4</td>
<td>MATH 112 Trigonometry</td>
<td>4</td>
</tr>
<tr>
<td>MTH 243 Intro to Probability & Statistics²</td>
<td>5</td>
<td>MATH 361 Statistical Methods I²</td>
<td>4</td>
</tr>
<tr>
<td>MTH 251 Calculus I</td>
<td>5</td>
<td>MATH 251 Differential Calculus</td>
<td>4</td>
</tr>
<tr>
<td>MTH 252 Calculus II</td>
<td>4</td>
<td>MATH 252 Integral Calculus</td>
<td>4</td>
</tr>
<tr>
<td>MTH 254 Vector Calculus I</td>
<td>4</td>
<td>MATH 254N Vector Calculus I</td>
<td>4</td>
</tr>
<tr>
<td>PHY 211 General Physics (Calculus)</td>
<td>5</td>
<td>PHY 221 General Physics with Calculus</td>
<td>4</td>
</tr>
<tr>
<td>PHY 212 General Physics (Calculus)</td>
<td>5</td>
<td>PHY 222 General Physics with Calculus</td>
<td>4</td>
</tr>
<tr>
<td>PHY 213 General Physics (Calculus)</td>
<td>5</td>
<td>PHY 223 General Physics with Calculus</td>
<td>4</td>
</tr>
<tr>
<td>SP 111 Fund of Public Speaking</td>
<td>4</td>
<td>SPE 111 Public Speaking</td>
<td>3</td>
</tr>
<tr>
<td>WR 121 English Comp: Intro to Argument</td>
<td>4</td>
<td>WRI 121 English Composition</td>
<td>3</td>
</tr>
<tr>
<td>WR 122 English Comp: Style & Argument</td>
<td>4</td>
<td>WRI 122 Argumentative Writing</td>
<td>3</td>
</tr>
<tr>
<td>Humanities elective³</td>
<td>3</td>
<td>Humanities elective³</td>
<td>3</td>
</tr>
<tr>
<td>Social Science elective⁵</td>
<td>3</td>
<td>Social science elective⁵</td>
<td>3</td>
</tr>
<tr>
<td>Total UCC Credits¹</td>
<td>99</td>
<td>Total Oregon Tech Degree Credits</td>
<td>80</td>
</tr>
</tbody>
</table>
Courses not required for UCC’s Surveying and Geomatics degree but are required for Oregon Tech’s Bachelor of Science in Geomatics, Surveying Option and can be taken at UCC or Oregon Tech.

<table>
<thead>
<tr>
<th>Course</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>BA 226 Business Law I</td>
<td>4</td>
</tr>
<tr>
<td>Humanities elective ³</td>
<td>6</td>
</tr>
<tr>
<td>Math elective</td>
<td>4</td>
</tr>
<tr>
<td>Science elective ⁴</td>
<td>8</td>
</tr>
<tr>
<td>Social science elective ⁵</td>
<td>9</td>
</tr>
<tr>
<td>SP 219 Small Group Discussion²</td>
<td>3</td>
</tr>
</tbody>
</table>

Total UCC additional credits¹: 34

Total UCC credits¹: 133

Total Oregon Tech Additional credits: 32

Total Oregon Tech credits: 112

Courses listed below are also required for the Bachelor of Science in Geomatics, Surveying Option, to be taken at Oregon Tech.

<table>
<thead>
<tr>
<th>Oregon Institute of Technology Course Number & Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>GIS 316 Geospatial Vector Analysis I</td>
<td>4</td>
</tr>
<tr>
<td>GME 175 Computations and Platting</td>
<td>3</td>
</tr>
<tr>
<td>GME 241 Boundary Law I</td>
<td>3</td>
</tr>
<tr>
<td>GME 343 Boundary Surveys</td>
<td>4</td>
</tr>
<tr>
<td>GME 351 Construction/Engineering Surveying</td>
<td>3</td>
</tr>
<tr>
<td>GME 372 Subdivision Planning and Platting</td>
<td>3</td>
</tr>
<tr>
<td>GME 425 Remote Sensing</td>
<td>4</td>
</tr>
<tr>
<td>GIS 306 Geospatial Raster Analysis</td>
<td>4</td>
</tr>
<tr>
<td>GME 444 Adjustment by Least Squares</td>
<td>4</td>
</tr>
<tr>
<td>GME 451 Geodesy</td>
<td>4</td>
</tr>
<tr>
<td>GME 452 Map Projections</td>
<td>3</td>
</tr>
<tr>
<td>GME 454 GNSS Surveying</td>
<td>4</td>
</tr>
<tr>
<td>GME 466 Boundary Law II</td>
<td>3</td>
</tr>
<tr>
<td>GME 468 Geomatics Practicum</td>
<td>2</td>
</tr>
<tr>
<td>MGT 345 Engineering Economy</td>
<td>3</td>
</tr>
<tr>
<td>Course</td>
<td>Credits</td>
</tr>
<tr>
<td>---</td>
<td>---------</td>
</tr>
<tr>
<td>MIS 113 Introduction to Database Systems</td>
<td>3</td>
</tr>
<tr>
<td>MIS 118 Programming Fundamentals</td>
<td>4</td>
</tr>
<tr>
<td>WRI 327 Advanced Technical Writing</td>
<td>3</td>
</tr>
<tr>
<td>Additional Credits</td>
<td>68</td>
</tr>
<tr>
<td>Total Accumulated Oregon Tech Degree Credits</td>
<td>180</td>
</tr>
</tbody>
</table>

1. Excess credits will transfer to Oregon Tech as general electives with the exception of developmental course work; however these credits will not count towards the GMS degree.
2. Does not count toward upper-division requirement.
3. Oregon Tech requires 9 humanities credits. Choose from UCC’s prefixes ART, ENG, MUP, MUS, PHL, R, TA or second year languages. However, only 3 humanities credits can be studio/performance based.
4. Students can transfer up to 6 credit hours of Social Science electives. Choose from the following UCC course prefixes: ANTH, CLA, EC, GEG (except 105), HST, PS, PSY, SOC, SSC, and WS, or other courses designated as Social Science electives by the Oregon Tech Registrar’s Office.
5. Students can transfer up to 4 credit hours of science electives into the GMS program; these courses should be designated as science electives by Oregon Tech. Choose from the following UCC prefixes: BI, CHEM, GI, GS, or PH. Please note Oregon Tech does not grant science credit for computer science courses.
6. Baccalaureate students must complete a minimum of 60 credits of upper-division work before a degree will be awarded. Upper-division is defined as 300- and 400-level classes at a bachelor’s degree granting institution.
7. Oregon Tech’s Bachelor of Science in Geomatics, Surveying Option requires 180 total credits.
Bachelor of Science in Geomatics, Surveying Option
Curriculum
Required courses and recommended terms during which they should be taken:

<table>
<thead>
<tr>
<th>Freshman Year</th>
<th>Winter</th>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>GIS 105</td>
<td>The Digital Earth</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GME 161</td>
<td>Plane Surveying I</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MATH 112</td>
<td>Trigonometry</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WRI 121</td>
<td>English Composition</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total</td>
<td></td>
<td>14</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Freshman Year</th>
<th>Winter</th>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>CE 203</td>
<td>Engineering Graphics</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GIS 134</td>
<td>Geographic Information Systems</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GME 175</td>
<td>Computations and Platting</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MATH 251</td>
<td>Differential Calculus</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WRI 122</td>
<td>Argumentative Writing</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total</td>
<td></td>
<td>16</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Freshman Year</th>
<th>Spring</th>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>GIS 209</td>
<td>GIS Data Integration</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GME 162</td>
<td>Plane Surveying II</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MATH 252</td>
<td>Integral Calculus</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SPE 111</td>
<td>Public Speaking</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total</td>
<td></td>
<td>16</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sophomore Year</th>
<th>Fall</th>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>GME 163</td>
<td>Route Surveying</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GME 241</td>
<td>Boundary Law I</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MATH 254</td>
<td>Vector Calculus I</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PHY 221</td>
<td>General Physics with Calculus</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total</td>
<td></td>
<td>15</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sophomore Year</th>
<th>Winter</th>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>GME 242</td>
<td>Land Descriptions and Cadastre</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GME 264</td>
<td>Digital Design for Surveying</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PHY 222</td>
<td>General Physics with Calculus</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WRI 227</td>
<td>Technical Report Writing</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total</td>
<td></td>
<td>14</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sophomore Year</th>
<th>Spring</th>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>GME 372</td>
<td>Subdivision Planning and Platting</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MATH 361</td>
<td>Statistical Methods I</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PHY 223</td>
<td>General Physics with Calculus</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total</td>
<td></td>
<td>14</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Junior Year</th>
<th>Fall</th>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>GIS 306</td>
<td>Geospatial Raster Analysis</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GME 343</td>
<td>Boundary Surveys</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MIS 113</td>
<td>Introductions to Database Systems</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WRI 327</td>
<td>Advanced Technical Writing</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total</td>
<td></td>
<td>17</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Junior Year</th>
<th>Winter</th>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>GIS 316</td>
<td>Geospatial Vector Analysis I</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GME 466</td>
<td>Boundary Law II</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SPE 321</td>
<td>Small Group and Team Communication</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ENV/GIS/GME Elective</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Math Elective*</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total</td>
<td></td>
<td>14</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Junior Year</th>
<th>Winter</th>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>BUS 228</td>
<td>Business Law</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GME 351</td>
<td>Construction and Engineering Surveying</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GME 444</td>
<td>Adjustment by Least Squares</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MGT 345</td>
<td>Engineering Economy</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Humanities Elective</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total</td>
<td></td>
<td>16</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Junior Year</th>
<th>Spring</th>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>BUS 304</td>
<td>Engineering Management</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GME 425</td>
<td>Remote Sensing</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GME 451</td>
<td>Geodesy</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MIS 118</td>
<td>Programming Fundamentals</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total</td>
<td></td>
<td>15</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Senior Year</th>
<th>Fall</th>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>GME 452</td>
<td>Map Projections</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GME 454</td>
<td>GNSS Surveying</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Science Elective</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Social Science Elective</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total</td>
<td></td>
<td>14</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Senior Year</th>
<th>Spring</th>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>GME 468</td>
<td>Geomatics Practicum</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Business Elective</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Humanities Elective</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Science Elective**</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total</td>
<td></td>
<td>12</td>
</tr>
</tbody>
</table>

* Students must demonstrate advancement in educational content, courses must not be lower level than courses in the required curriculum. MATH 341 or MATH 362 recommended.
** GEOL 201 Physical Geology recommended. Note: Humanities and Social Science Electives must be approved by the department.

Total credits required for B.S. in Geomatics, Surveying Option: 180

Bachelor of Science in Geomatics, Geographic Information Systems (GIS) Option
Geographic Information Systems (GIS) is a systematic approach to the management, analysis, and display of geographic information. Although the management of such information often times requires the application of advanced RDBMS techniques, the ability to see a project through to completion requires fundamental project management skills as well. The analysis of geodatasets is predicated on a firm understanding of spatial reference/coordinate systems, topological relationships, and statistical methods. Techniques for displaying geographic information take various forms such as maps, geographic datasets, and data models. Students graduating from this course of study will understand how to manipulate geographically based data in order to solve geospatial problems.

Students learn in a project-based environment how to manage the flow of data through the project in terms of data acquisition, processing, analysis, and presentation. Within the GIS option, students are able to select individual areas of focus based on independent study and/or online courses.

Career Opportunities
The list of opportunities for students in the field of GIS has been, and is continuing to show substantial growth. As our society becomes more data centered, the importance of understanding the spatial location of this data and its spatial relationship to other data is becoming increasingly apparent. Understanding such geospatial relationships is fundamental to areas such as health care, land records management, transportation modeling, environmental engineering/science, and urban planning, to name only a few. Local, state, and federal agencies are embracing GIS more each year as these agencies realize that GIS is the appropriate tool to solve long-standing geospatial problems. Private industry is also embracing GIS since it can be used to streamline delivery and/or response routes. Both private and public entities have also realized that GIS provides an excellent decision support framework structure.